2D Graphics - Techniques

Curve Fitting from Raster Data

URL Description
Bezier Curve - Wikipedia
Canvas Bézier Curve Example
Cubic spline curves

A cubic spline curve is a piecewise cubic curve with continuous 2nd derivative.

Curve Fiting Using Bezier Splines (java example)

Created by Atanu Mohanty. More examples on the page below:

Atanu Mohanty
Fitting B-Spline Curves to Point Clouds by Squared Distance Minimization

Computing a curve to approximate data points is a problem encountered frequently in many applications in computer graphics, computer vision, CAD/CAM, and image processing. We present a novel and effcient method, called squared distance minimization (SDM), for computing a planar B-spline curve, closed or open, to approximate a target shape de?ned by a point cloud, i.e., a set of unorganized, possibly noisy data points. We show that SDM outperforms signifcantly other optimization methods used currently in common practice of curve fitting.

Fitting Polynomial Surfaces to Triangular Meshes...

Fitting Polynomial Surfaces to Triangular Meshes with Voronoi Squared Distance Minimization

Forcing Bezier Interpolation

A good description of how to find the Cube Bezier control points given 4 points on the curve. If P0...P3 are 4 points known on your curve, then y0...y3 are the control points that define the Bezier Curve.

        [y0] = 1/27 * [ 27  0  0  0 ] * [ P0 ]
        [y1]                [  8 12  6  1 ]    [ P1 ]
        [y2]                [  1  6 12  8 ]    [ P2 ]
        [y3]                [  0  0  0 27 ]    [ P3 ]
How to Draw Bezier Curves on an HTML5 Canvas
How to approximate a vector contour from an elevation raster
RasterToVector.com
The Math Behind Bezier Cube Splines

Bezier Cubic Splines are an excellent and preferred method to draw the smooth continuous curves often found in typography, CAD/CAM, and graphics in general.